https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

LOoQistiCS

* Fall 2025 Student Evaluations of Teaching were sent
* Again: if 80% of you finish the evaluation, all will get 2 bonus
points.

* Completion rate as of today: 58%

* Exam recitation session: next Monday evening (exact time TBD)

High-level Picture

Data Model Compute

(tl tmul) ?Mc:ke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

A repr that expresses the
computation using primitives

Focus of the rest of lectures

Data Model Compute

Math primitives

{xi}ni=1 (mostly matmul) ?Make LLMs run on
(large clusters of) GPUs

A repr that expresses the
computation using primitives

Large Language Modaels

* Transformers, Attentions
® Serving and inference
® Parallelization

* Attention optimization

Next Token Prediction

P(next word | prefix)

San Diego has very nice _

San Francisco is a aity of _

surfing
weather
SNow

iInnovation
homeless

0.4
0.5
0.01
0.6
0.3

Next Token Prediction

Probability(”’San Diego has very nice weather’)
= P(“San Diego”) P(*has” | "San Diego”)P(*very” | "San Diego
has”)P(“aty”|...). . .P(“weather”|...)

T
Max Prob(x;) = 1_[P(Xe11]%1. 1)
t=1

/ \

MLE on observed data x; 1, This s next token prediction.
Predicting using seg2seq NNSs.

Sequence Prediction

Take a set of input sequence, predict the output sequence

Y1 Y2 Y3 Y4

T
model H P (xt+1 |x1...t)
| | | t=1

Predict each output based on history Ve = fo (%1.0)

There are many ways to build up the predictive model

“Attention” Mechanism

Generally refers to the approach that weighted combine individual states

Attention output hy h, h h,
hy =Y! s:x
/ t (=121t

Hidden states from X1 952 X3 X4

previous layer

Intuitively s; is “attention score” that computes how relevant the position i’s input is
to this current hidden output

There are different methods to decide how attention score is being computed

Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

J) 14

Given three inputs Q, K,V € R4 (“queries”, “keys”, “values”)

Define the self-attention as:

. QK"
SelfAttention(Q, K, V) = softmax 1172 V

10

A Closer Look at Self-Attention

Use q;, k;, v, to refers to row t of the K matrix

h

h;

h

hy

dt

Ask the following question:

How to compute the output h;, based on g;, K,V
one timestep ¢t

To keep presentation simple, we will drop suffix t
and just use g to refer to g; in next few slide

11

A Closer Look at Self-Attention

Use q;, k;, v, to refers to row t of the K matrix

Conceptually, we compute the output in the following two steps:

/% Pre-softmax “attention score”

kl kz k3 k4_ Si — %qkl’,r
Vq Uy V3 Uy Weighed average via softmax
_ L Ziexp(s)v;
h =); softmax(s);v; = 3 exp(s))

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance

12

Comparing the Matrix Form and the Decomposed Form

Use q;, k;, v, to refers to row t of the K matrix

. QK"
SelfAttention(Q, K, V) = softmax V

dl/?2
/ﬁ Pre-softmax “attention score”

kl kz k3 k4_ Sti — \/iaqtklr,r

Vq Uy V3 Uy Weighed average via softmax

hy = 2 softmaX(St,:)ivi = softmax(St,:)V

l

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance

Multi-Head Attention

Have multiple “attention heads” @Y, k0, v denotes j-th attention head

. 0 . NI : L .
hgf) hZJ hgf) hf{) q Apply self-attention in each attention head

/% ' QK
SelfAttention(Q, K, V) = softmax V

. £ . _ 1/2
() () () d
ko k7 k) kY

vl(j) 1]2(1) vg(j) Vij)

Concatenate all output heads together as output

Each head can correspond to different kind of information.
Sometimes we can share the heads: GQA(group query attention) all heads
share K, V but have different Q

14

How to get Q K V?

Obtain Q, K,V from previous layer’s hidden state X by linear projection

50

50

kD)

50

kD)

)

590

p)

kD)

b0

kD)

b0

b

g

Linear projection

Q = XW,
K:XWK
V:XWV

Can compute all heads and Q, K, V together then
split/reshape out into individual Q, K,V with multiple heads

15

Transformer Block

A typical transformer block

Z = SelfAttention(X Wy, XW,, XWy,)
Z = LayerNorm(X + Z)
H = LayerNorm(ReLU(ZW,)W, + Z)

(multi-head) self-attention, followed by a linear layer and
RelLU and some additional residual connections and
normalization

output

normalize

Feed forward
{k

normalize

Self-attention |

.......

matmul

softmax

matmul

...

16

Masked Self-Attention

In the matrix form, we are computing weighted average over all inputs

b In auto regressive models, usually it is good to maintain casual
4 relation, and only attend to some of the inputs (e.g. skip the red

/_% dashed edge on the left). We can add “attention mask”

KT
MaskedSelfAttention(Q, K, V) = softmax (Q — M) V

dl/2

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so
17

Summary: Transtormers

* Transformer decoders

* Many of them

®* Redlly just: attentions + layernorm + MLPs -
* Word embeddings
®* Position embeddings

®* Rotary embedding

® | 0ss function: cross entropy loss over a seque

Qutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

Jual

Transformers

Qutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Masked

Multi-Head
Attention

Nx

Positional
Encoding

Input
Embedding

Inputs

Qutput
Probabilities

Feedforward Layers

FFN(LL’, Wl, bl, Wz, bz) = f(XW1 -+ bl)WQ =i b2

\LinearZ "

oo

| Add & Norm .

Non-linearity

Linear1/ .

y N

Add & Norm

Masked
Multi-Head
Attention

L 4
QS
Input
Embedding

INnputs

> < > <

P <
-

> <

| _—

Positional
Encoding

Computing Components in LLMs?e

®* Transformer decoders (many of them)
* self-aftentions (slow)
®* l[ayernorm, residual (fast)
* MLPs (slow)
®* Nonlinear (fast)
* Word embeddings (fast)
®* Position embeddings (fast)

® | oss function: cross entropy loss over a sequence of words

LLMS

Ll =43

Transformer Decoder

Transformer Decoder

Transformer Decoder

Transformer Decoder

Transformer Decoder

:

robotics

Original Transformer vs. LLM today

Vaswani et al.

Pre

Norm Position Post

Norm Type LayerNorm RMSNorm

Non-linearity RelLU SiLU

Positional

Encoding Sinusoidal RoPE

Training LLMs Cate are the best <eoc>

T

* Sequences are known a priori [Transformer layer N

A

®* For each position, look at [1, 2, ..., 1-1] words [Transformer layer N-1

to predict word t, and calculate the loss at t

* Parallelize the computation across all token | Transformer layer 2

positions, and then apply masking T

[Transformer layer 1

T

I R N A

ccoes> (Cats are the best

Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the number of parameters of an LLM@e
®* mMemory, communication

®* calculate the flops needed to frain an LLM?
® compute

* calculate the memory needed to train an LLM?¢

®* memory, communication

Qutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the number of parameters of an LLM@e
* calculate the flops needed to frain an LLM?¢

* calculate the memory needed to train an LLM?¢

Qutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

Transformer
Decoder
Layer

Input vocab
Data

Embedding Layer

Layer Normalization
(RMS Norm)

Math Equations

X=W

&m

bedding *on eh 0 t(X token_id ﬂ

3

Self-Attention

: -

Layer Normalization
(RMS Norm)

3

Feed Forward

/

&

-

Layer Normalization
(RMS Norm)

ot

/

a

d

'~ RMS(a

)4;9‘. , where RMS(a) =

O=w,X,K=0,X,V=0,X

A

Ja.

softmax(

a

o

= RMé(a)

@, where RMS(a) =

FFN(XH:) = Wd

-SwiGLU(W . X,

Wi Ifl

, WX)w

&

.

Linear
Transformation

A

1N

C

Softmax

)

__ 4 _ fl e
a,.-RMS(H)@“whEPERMS(a)— H;a, w

Y=

W, X+ b, where

Y is the output of Linear Tmnsfarmatfafn

where &
is thedimensionality of
the key vectors, used as a
scaling factor to stabilize
thetraining process.

Feed Forward SwiGLU

The general formula for SwiGLU is:
SwiGLU(z) = Swish(xW; + b1) ® (W5 + bs)

Swish is the activation function applied to one branch, defined as:

G=0.1
—_— A=1.0
— 3=10.0

SWISh(Z) — . J(Z) 3 Swish

SWIGLU helps the model capture more complex

patterns by selectively gating information

Swish is smoother than traditional activations RelLU

Summary

Transformer
Decoder
Layer

[Input vocab }
Data

Embedding Layer

\ 4

Parameter Shapes

vocab size(V) x hidden_dimension(H)

Layer Normalization
(RMS Norm)

hidden dimension(H)

.
Self-Attention

4 x hidden_dimension(H) x
hidden_dimension(H)

-

Layer Normalization
(RMS Norm)

hidden dimension(H)

3

Feed Forward

3 x hidden_dimension(H) x
intermediate_size(l)

) : .

Layer Normalization

(RMS Norm)]
) ! ! i
Linear
Transformation

hidden_dimension(H)

Ve >/

&

vocab_size(V) x hidden_dimension(H)

. AN B 4 4 4 AN

(softmax)

Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the flops needed to frain an LLM?¢

* calculate the memory needed to train an LLM?¢

Qutput
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

Estimate the Compute: FLOPs

The FLOPs for multiplying two matrices of dimensions mxn and nxh can be calculated
as follows:

FLOPs=mxhx(2n-1)
So the total number of FLOPs is roughly FLOPs =2m x n x h

QDIUMP\S

G B R
‘,. ‘1 008 &
5:*143 ""'4" e.*‘ *?ﬁé.ﬂﬁg <

i
H‘

rows

LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:
Batch size: b

Sequence length: s

The number of attention heads: n
Hidden state size of one head: d
Hidden state size: h (h =n * d)
SwiGLU proj dim: i

Vocab size: v

Input:

X

Self Attention:

XWq, XWy, XW,,
RoOPE

P = Softmax(QKT/vd)
PV

AW,

Residual Connection:

Output Shape:
(b, s, h)

(b, s, h)
(b, n, s, d)
(b, n, s, s)
(b, n, s, d)
(b, s, h)

(b, s, h)

FLOPs

3 * 2bsh?
3bsnd

2bs?nd + 3bs?n
2bs’nd

2bsh?

bsh

Batch size: b

Sequence length: s

of attention heads: n
Hidden state dim of one
head: d

Hidden state dim: h

[Input Sequence(vocab) J

v

[Embedding J

4
[Layer Normalization]

(RMS Norm)

@ 0 O

[Multihead Self-Attention J

S

v

Layer Normalization
(RMS Norm)

v
Feed Forward SwiGLU

i

Output from Self Attn:
X

Feed-Forward SwiGLU:
XWoaier XWy5
Swish Activation
Element-wise *

><Vvdown
RMS Norm:

SwiGLU(z) = Swish(zW; + b)) ® (zWs5 + bs)

Output Shape:

(b, s, h)

(b, s, 1)
(b, s, i)
(b, s, 1)
(b, s, h)

(b, s, h)

FLOPs

2 * 2bshi
4psi

bsi

2bshi

4bsh + 2bs

Batch size: b
Sequence length: s
Hidden state dim: h
SWiGLU projdim: i

|

@ (90

[Multihead Self-Attention J

S

v

Layer Normalization
(RMS Norm)

v
Feed Forward SwiGLU

o

1. Calculate Root Mean Square:

d
. RMS(z) = /137, 22

2. Normalize:

« RMSNorm(z) = RMS(2) ¢

Y

Input Sequence(vocab)

LLama 2 7B Flops Forward (Training)

Embedding

\ 4
Layer Normalization
(RMS Norm)

Total Flops = #num_layers * (Attention block + SwiGLU block)
+ Prediction head é) ® @

[Multihead Self-Attention J

= #num_layers * (6bsh? + 4bs?h + 3bs’n +2bsh?) é‘
+ #num_layers (6bshi) (P
. (RMS Norm)
+ 2 bshv R T
| Feed Forward SwiGLU |

;i

Layer Normalization
(RMS Norm)

v

Linear Transformation
»

Softmax

LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters: Total Flops = N * (6bsh? + 4bs?h + 3bs?n +2bsh?)
Batch size: b=1 + N (6bshi)
Sequence length: s=4096
. + 2 bshv
The number of attention heads:; n=32
=~ 63 TFLOPs

Hidden state size of one head: d=128
Hidden state size: h =4096

SwiGLU proj dim: i=11008

Vocab size: v=32000

The number of layers: N=32

Flops Distribution

Training Computational Costs Breakdown:

Total Training TeraFLOPs: 192.17 TFLOPs
FLOP Distribution by Layer:
Embedding Layer: 1.676%
Normalization: 0.007%
Residual: 0.003%
Attention: 41.276%
MLP (Multi-Layer Perceptron): 55.361%
Linear: 1.676%

Scaling Up: Where is the Potential Boftleneck®e

Decoder Layers

([Q (Linear J(K (Linear][V(Ljnear N Self- Attention forward + baCkwar d

transformation) || transformation) || transformation)

2sh’ 2sh’ 25h’) - =

4s’h
— \)

=Ir x N

Projection from low dimension to high dimension FeedForward

Network
4s x h xi=4s x h x4h = 16sh’

QK dot product calculation ‘Softmax calculation and = Simpllfy 2
weighted summation 8 h 4 h
(generate attention) Gattoton sors) > S X (+ S

Projection from high dimension to low dimension

4sxixh=4s x4h x h = 16sh’

Embedding Tokens into Hidden Space Ereddiction
ea

Projectmg Hidden States to Vocabulary

p , N simplify
N: The number of layers in the Transformer model.
S: Sequence length, representing the number of tokens in the
input sequence. (" R
h:Hidden state size. representing the dimensionality of the
model’s internal representation for each token. 2 2
n:The number of attention heads in the sclf-attention N (S (8h +4S h) +3 2S h) +2hv
mechanism.
V: Vocabulary size, representing the number of possible tokens k o
in the language model's vocabulary.
\i: Intermediate layer dimension (typically set as 4h) 5

Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the number of parameters of an LLM?¢
®* calculate the flops needed to train an LLM¢

®* calculate the memory needed to train an LLM?¢

Qutput
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: High-level Picture
	Slide 4: Focus of the rest of lectures
	Slide 5: Large Language Models
	Slide 6: Next Token Prediction
	Slide 7: Next Token Prediction
	Slide 8: Sequence Prediction
	Slide 9: “Attention” Mechanism
	Slide 10: Self-Attention Operation
	Slide 11: A Closer Look at Self-Attention
	Slide 12: A Closer Look at Self-Attention
	Slide 13: Comparing the Matrix Form and the Decomposed Form
	Slide 14: Multi-Head Attention
	Slide 15: How to get Q K V?
	Slide 16: Transformer Block
	Slide 17: Masked Self-Attention
	Slide 18: Summary: Transformers
	Slide 19: Transformers
	Slide 20: Feedforward Layers
	Slide 21: Computing Components in LLMs?
	Slide 22: LLMs
	Slide 23: Original Transformer vs. LLM today
	Slide 24: Training LLMs
	Slide 25: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 26: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 27
	Slide 28: Feed Forward SwiGLU
	Slide 29: Summary
	Slide 30: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 31: Estimate the Compute: FLOPs
	Slide 32: LLama 2 7B Flops Forward Calculation (Training)
	Slide 33
	Slide 34
	Slide 35: LLama 2 7B Flops Forward (Training)
	Slide 36: LLama 2 7B Flops Forward Calculation (Training)
	Slide 37: Flops Distribution
	Slide 38: Scaling Up: Where is the Potential Bottleneck?
	Slide 39: Connecting the Dots: Compute/Comm characteristic of LLMs

