
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Logistics

• Fall 2025 Student Evaluations of Teaching were sent
• Again: if 80% of you finish the evaluation, all will get 2 bonus

points.

• Completion rate as of today: 58%

• Exam recitation session: next Monday evening (exact time TBD)

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

Focus of the rest of lectures

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make LLMs run on

(large clusters of) GPUs

Large Language Models

• Transformers, Attentions

• Serving and inference

• Parallelization

• Attention optimization

Next Token Prediction

P 𝑛𝑒𝑥𝑡𝑤𝑜𝑟𝑑 𝑝𝑟𝑒𝑓𝑖𝑥)

SanDiegohasverynice_

SanFrancisco isacityof _

surfing

weather

snow

0.4

0.5
0.01

innovation

homeless

0.6

0.3

Next Token Prediction

Probability(”SanDiegohasveryniceweather”)
=P(“SanDiego”) P(“has”|”SanDiego”)P(“very”|”SanDiego

has”)P(“city”|…)…P(“weather”|…)

Max𝑃𝑟𝑜b 𝑥1:𝑇 =ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

MLEonobserveddata𝑥1:𝑇, Thisisnexttokenprediction.

Predicting using seq2seqNNs.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Take a set of input sequence, predict the output sequence

Predict each output based on history

There are many ways to build up the predictive model

Sequence Prediction

8

𝑥1 𝑥2 𝑥3 𝑥4

model

𝑦1 𝑦2 𝑦3 𝑦4

….

𝑦𝑡 = 𝑓𝜃 (𝑥1:𝑡)

ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

“Attention” Mechanism

Generally refers to the approach that weighted combine individual states

9

ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4Hidden states from

previous layer

Attention output

ℎ𝑡 = σ𝑖=1
𝑡 𝑠𝑖𝑥𝑡

Intuitively 𝑠𝑖 is “attention score” that computes how relevant the position 𝑖’s input is
to this current hidden output

There are different methods to decide how attention score is being computed

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

Given three inputs 𝑄,𝐾, 𝑉 ∈ ℝ𝑇×𝑑 (“queries”, “keys”, “values”)

Define the self-attention as:

10

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

11

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞𝑡
Ask the following question:

How to compute the output ℎ𝑡, based on 𝑞𝑡, 𝐾, 𝑉
one timestep 𝑡

To keep presentation simple, we will drop suffix 𝑡
and just use 𝑞 to refer to 𝑞𝑡 in next few slide

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention

12

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Conceptually, we compute the output in the following two steps:

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = σ𝑖 softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp 𝑠𝑖 𝑣𝑖

σ𝑗 exp 𝑠𝑗

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,
then we do weighted sum of values proportional to their relevance

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing the Matrix Form and the Decomposed Form

13

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax

ℎ𝑡 =෍

𝑖

softmax 𝑆𝑡,: 𝑖
𝑣𝑖 = softmax 𝑆𝑡,: 𝑉

𝑆𝑡𝑖 =
1

𝑑
𝑞𝑡𝑘𝑖

𝑇

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,
then we do weighted sum of values proportional to their relevance

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Head Attention

Have multiple “attention heads” denotes 𝑗-th attention head

14

ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

𝑄 𝑗 , 𝐾(𝑗), 𝑉(𝑗)

Apply self-attention in each attention head

Concatenate all output heads together as output

Each head can correspond to different kind of information.

Sometimes we can share the heads: GQA(group query attention) all heads

share K, V but have different Q

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to get Q K V?

Obtain 𝑄,𝐾, 𝑉 from previous layer’s hidden state 𝑋 by linear projection

15

ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

𝑄 = 𝑋𝑊𝑞

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Can compute all heads and 𝑄,𝐾, 𝑉 together then

split/reshape out into individual 𝑄,𝐾, 𝑉 with multiple heads

𝑋

Linear projection

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transformer Block

16

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊𝐾, 𝑋𝑊𝑄, 𝑋𝑊𝑉

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

(multi-head) self-attention, followed by a linear layer and

ReLU and some additional residual connections and

normalization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Masked Self-Attention

17

MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
−𝑀 𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞3

In the matrix form, we are computing weighted average over all inputs

In auto regressive models, usually it is good to maintain casual
relation, and only attend to some of the inputs (e.g. skip the red
dashed edge on the left). We can add “attention mask”

𝑀𝑖𝑗 = ቊ
∞, 𝑗 > 𝑖
0, 𝑗 ≤ 𝑖

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so

∞

0

Summary: Transformers

• Transformer decoders

• Many of them

• Really just: attentions + layernorm + MLPs + nonlinear + residual

• Word embeddings

• Position embeddings

• Rotary embedding

• Loss function: cross entropy loss over a sequence of words

Transformers

Feedforward Layers

Computing Components in LLMs?

• Transformer decoders (many of them)

• self-attentions (slow)

• layernorm, residual (fast)

• MLPs (slow)

• Nonlinear (fast)

• Word embeddings (fast)

• Position embeddings (fast)

• Loss function: cross entropy loss over a sequence of words

LLMs

Original Transformer vs. LLM today

Training LLMs

• Sequences are known a priori

• For each position, look at [1, 2, …, t-1] words

to predict word t, and calculate the loss at t

• Parallelize the computation across all token

positions, and then apply masking

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• memory, communication

• calculate the flops needed to train an LLM?

• compute

• calculate the memory needed to train an LLM?

• memory, communication

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?

Feed Forward SwiGLU

- SwiGLU helps the model capture more complex

patterns by selectively gating information

- Swish is smoother than traditional activations ReLU

Summary

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?

Estimate the Compute: FLOPs

The FLOPs for multiplying two matrices of dimensions m×n and n×h can be calculated

as follows:

FLOPs = m × h × (2n − 1)

So the total number of FLOPs is roughly FLOPs ≈ 2m × n × h

LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:

Batch size: b

Sequence length: s

The number of attention heads: n

Hidden state size of one head: d

Hidden state size: h (h = n * d)

SwiGLU proj dim: i

Vocab size: v

Input:

X

Self Attention:

XWQ, XWK, XWV

RoPE

P = Softmax(QKT/√d)

PV

AWO

Residual Connection:

Batch size: b
Sequence length: s
of attention heads: n
Hidden state dim of one
head: d
Hidden state dim: h

Output Shape:

(b, s, h)

(b, s, h)

(b, n, s, d)

(b, n, s, s)

(b, n, s, d)

(b, s, h)

(b, s, h)

FLOPs

0

3 * 2bsh2

3bsnd

2bs2nd + 3bs2n

2bs2nd

2bsh2

bsh

Output from Self Attn:

X

Feed-Forward SwiGLU:

XWgate, XWup

Swish Activation

Element-wise *

XWdown

RMS Norm:

Batch size: b
Sequence length: s
Hidden state dim: h
SwiGLU proj dim: i

Output Shape:

(b, s, h)

(b, s, i)

(b, s, i)

(b, s, i)

(b, s, h)

(b, s, h)

FLOPs

0

2 * 2bshi

4bsi

bsi

2bshi

4bsh + 2bs

LLama 2 7B Flops Forward (Training)

Total Flops ≈ #num_layers * (Attention block + SwiGLU block)

+ Prediction head

= #num_layers * (6bsh2 + 4bs2h + 3bs2n +2bsh2)

+ #num_layers (6bshi)

+ 2 bshv

LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:

Batch size: b=1

Sequence length: s=4096

The number of attention heads: n=32

Hidden state size of one head: d=128

Hidden state size: h =4096

SwiGLU proj dim: i=11008

Vocab size: v=32000

The number of layers: N=32

Total Flops ≈ N * (6bsh2 + 4bs2h + 3bs2n +2bsh2)

+ N (6bshi)

+ 2 bshv

≈ 63 TFLOPs

Flops Distribution

Training Computational Costs Breakdown:

● Total Training TeraFLOPs: 192.17 TFLOPs
● FLOP Distribution by Layer:

○ Embedding Layer: 1.676%
○ Normalization: 0.007%
○ Residual: 0.003%
○ Attention: 41.276%
○ MLP (Multi-Layer Perceptron): 55.361%
○ Linear: 1.676%

Scaling Up: Where is the Potential Bottleneck?

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: High-level Picture
	Slide 4: Focus of the rest of lectures
	Slide 5: Large Language Models
	Slide 6: Next Token Prediction
	Slide 7: Next Token Prediction
	Slide 8: Sequence Prediction
	Slide 9: “Attention” Mechanism
	Slide 10: Self-Attention Operation
	Slide 11: A Closer Look at Self-Attention
	Slide 12: A Closer Look at Self-Attention
	Slide 13: Comparing the Matrix Form and the Decomposed Form
	Slide 14: Multi-Head Attention
	Slide 15: How to get Q K V?
	Slide 16: Transformer Block
	Slide 17: Masked Self-Attention
	Slide 18: Summary: Transformers
	Slide 19: Transformers
	Slide 20: Feedforward Layers
	Slide 21: Computing Components in LLMs?
	Slide 22: LLMs
	Slide 23: Original Transformer vs. LLM today
	Slide 24: Training LLMs
	Slide 25: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 26: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 27
	Slide 28: Feed Forward SwiGLU
	Slide 29: Summary
	Slide 30: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 31: Estimate the Compute: FLOPs
	Slide 32: LLama 2 7B Flops Forward Calculation (Training)
	Slide 33
	Slide 34
	Slide 35: LLama 2 7B Flops Forward (Training)
	Slide 36: LLama 2 7B Flops Forward Calculation (Training)
	Slide 37: Flops Distribution
	Slide 38: Scaling Up: Where is the Potential Bottleneck?
	Slide 39: Connecting the Dots: Compute/Comm characteristic of LLMs

